

CHARACTERISTICS OF THE THERMAL RUNAWAY Work Package 1.4

ALBERO Project

Institut für Sicherheitstechnik/Schiffssicherheit e.V.

Behaviour of Lithium-Ion-Batteries in hazardous situations

Institut für Sicherheitstechnik / Schiffssicherheit e.V.

Car batteries can overheat due to internal processes (electrical malfunctions, overcharging, uncontrolled chemical reactions) and external processes (solar radiation, fire in the environment, hot surfaces in the vicinity). Hence a thermal runaway can occur.

What is meant by thermal runaway?

A **Themal Runaway** refers to the overheating of an exothermic chemical reaction or technical apparatus due to a self-reinforcing heat-producing process. [1].

In recent years, calorimetric studies on the behavior of Li-Ion batteries under thermal load have been carried out in many working groups around the world. As a rule, 18650 single cells were analyzed in a heatable calorimeter. Over the years, the investigations have become more and more detailed, and distinctions have been made between cell chemistry, state of charge, aging, and so on. More recent investigations also deal with the thermal runaway during charging/discharging. The classic curve of such an experiment looks as follows:

A distinction is made between the onset temperature, i.e. the approach at which the heat development deviates from the constant heating rate, and the thermal runaway temperature, at which the chemical reactions in the cell continue to accelerate themselves and therefore a very sudden very sharp rise in temperature is recorded. The definition of the temperature varies at which thermal runaway is said to occur. For example, some define a temperature change of at least 4°C/s [2], others 100°C/min. [3].

- [1] https://de.wikipedia.org/wiki/Thermisches_Durchgehen
- [2] https://ec.europa.eu/jrc/sites/jrcsh/files/initializing-of-thermal-runaway-for-lithium-ion-cells.pdf
- [3] Melcher, A.; Ziebert, C.; Rohde, M.; Seifert, H.J. Modeling and Simulation of the Thermal Runaway Behavior of Cylindrical Li-Ion Cells—Computing of Critical Parameters. *Energies* **2016**, *9*, 292.

Occasionally, the temperature is explicitly stated too at which the cell bursts and gases are released (T venting). This is usually between the onset temperature and the runaway temperature.

At what temperatures does thermal runaway occur?

A comprehensive literature research has been performed on scientific papers that dealing with the determination of the thermal runaway temperature. The table lists the cells tested and roughly the experimental conditions as well as the results found. The overview covers only a section of the research carried out, but gives a representative impression regarding the results.

battery details	how heated?	thermal	source
		runaway TR	
		at [°C]	
Sony (US18650) 4.06V open	heated in	104	Al Hallaj, S.; Maleki, H.; Hong, J.;
circuit voltage (OCV)	calorimeter		Selman, J. Thermal modeling and
Sony (US18650) 3.0V, open		109	batteries. J. Power Sources 1999 . 83.
circuit voltage (OCV)			1–8.
Sony (US18650) 2.8 V open		144	
circuit voltage (OCV)			
18650 Li-NMC	heatable	TR at 220, cell	Andrey W. Golubkov et. al : Termal
(Li(Ni _{0.45} Mn _{0.45} Co _{0.10})O ₂)	reactor with	breakup at	runaway experiments on consumer Li-
	thermos	160	olivon-type cathodes, <i>RSC Adv.</i> ,
18650 LCO/NMC	elements	TR at 208	2014 (4), 3633 - 3642
LiCoO ₂ and Li(Nio.50Mno.25Coo.25)O ₂ .	haatabla staal	TD at 172	Alexander Königseder: Investigation of
LI(NICOAI)O2	reactor with	r dl 175,	the Thermal Runaway in Lithium Ion
molinial capacity of 5550	thormos	ot 120	batteries, Masterarbeit, Technische
3 60 V	elements	at 150	Universität Graz, März 2017
$1i(NiMnCo)O_{0}$ 3200 mAb at a	elements	TP at 166	
nominal voltage of 3 75 V		venting 129	
$Li(NiMnCo)O_{2}$ 3500 mAb and		TR at 150	
a nominal voltage of 3 64 V		venting 122	
Li(Ni0.8Co0.15Al0.05)O ₂	-	TR at 166.	
3500 mAh and a nominal		venting 129	
voltage of 3.60 V			
Li(NiCoAl)O ₂ 3300 mAh at a		TR at 156	
nominal voltage of 3.60 V			
Li(NiMnCo)O ₂ , 2500 mAh and	-	TR at 196,	
a nominal voltage of 3.60 V		venting 117	
Li(NiMnCo)O ₂ ,2600 mAh at a	-	TR at 153,	
nominal voltage of 3.7 V		venting 147	
18650 cylindrical or prismatic	malfunction of	TR of the	Carlos F. Lopez, Judith A. Jeevarajan,
LiCoO ₂ batteries, spiral	the center cell	trigger cell in	Partha P. Mukherjee:
winding, differences in the	in a 9-cell pack	different	Runaway and Propagationin Lithium-
connection of the individual	with heating	tests:	Ion Battery Modules, Journal of The
cells (S-type or M-type)	element,	204, 186, 119,	Electrochemical Society,162(9) A1905-
	monitoring of	200, 157, 151	A1915, 2015
	the		
	temperature		

	directly at the		
	trigger cell and		
	at surrounding		
	cells		
18650 LiFePO ₄	heated in calorimeter	T onset at 200	Wen, CY., Jhu, CY., Wang, YW. et al.: Thermal runaway features of 18650 lithium-ion batteries for LiFePO4 cathode material by DSC and VSP2 J Therm Anal Calorim (2012) 109:
			1297. https://doi.org/10.1007/s10973-012- 2573-2
Li-Ion, 2200 mAh, 3,7 V	no details	To at 92	https://www.netzsch-thermal-
		TR at ca. 150	applikationen/batterien/lithium-ion-
LiFePO ₄ , 1200 mAh, 3,3 V		To at 80	cells-thermal-runaway/
		TR at ca. 170	
LiFePO ₄ , 1100 mAh, 3,2 V		To at 116	
		TR at ca. 165	
18650 LCO, 2600 mAh	heated in	To at 131	Jhu, C.Y.;Wang, Y.W.;Wen, C.Y.; Shu,
18650 NMC, 2000 mAh	calorimeter	To at 175	LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology. Appl. Energy 2012 , 100, 127–131.
18650 LCO / Graphite, 2600	heated in	To at 175	Chen, W.C.; Wang, Y.W.; Shu, C.M.
mAh, 30% charged	calorimeter		Adiabatic calorimetry test of the
50% charged		To at 174	reaction kinetics and self-heating model for 18650 Li-ion cells in various
80% charged		To at 140	states of charge. J. Power Sources
100 % charged		To at 122	2016 , 318, 200–209.
18650 LCO / Graphite,	heated in	To at 165	Mendoza-Hernandez, O.; Ishikawa, H.;
800mAh, 0% charged	calorimeter at		Nishikawa, Y.; Maruyama, Y.; Umeda, M. Cathode material
25% charged	different	To at 160	comparison of thermal runaway
50% charged	charge states	To at 155	behavior of Li-ion cells at different
75% charged		To at 140	J. Power Sources 2015 , 280, 499–504.
100% charged		To at 125	
120 % charged		To at 116	
18650 LiMn ₂ O ₄ / Graphite,	heated in	-	
720 mAh, 0% charged	calorimeter at		
25% charged	different	To at 110	
50% charged	charge states	To at 105	
75% charged]	To at 105	
100% charged		To at 105	
120 % charged]	To at 100	
LiFePO ₄ cylindric, 2600 mAh	heated in	To at 175	Orendorff, C.; Lamb, J.; Steele, L.A.;
Li(NiCoAl)O ₂ cylindric 3400 mAh	calorimeter	To at 160	Spangler, S.W.; Langendorf, J.: Quantification of Lithium-Ion Cell Thermal Runaway Energetics; SAND2016-0486; Sandia National Laboratories: Albuquerque, NM, USA, 2016

18650 LiMn ₂ O ₄ , 1650 mAh,	heated in	To at 91	B. Lei, W. Zhao *, C. Ziebert, N.
18650 LiFePO ₄ , 1100 mAh	calorimeter	To at 90	Uhlmann, M. Rohde, H. J. Seifert: Experimental Analysis of Thermal
18650 Li(NiMnCo)O ₂		To at 91	Runaway in 18650 Cylindrical Li-Ion
2200 mAh			Cells Using an Accelerating Rate Calorimeter, Batteries 2017 , 3, 14;
18650 LiCoO ₂ / Graphite, 20%	heated in	TR at 231	Liu, J.; Wang, Z.; Gong, J.; Liu, K.;
40% charged	calorimeter at	TR at 226	of Thermal Runaway Process of 18650
60 % charged	different	TR at 220	Lithium-Ion Battery. <i>Materials</i> 2017,
80 % charged	charge states	TR at 204	<i>10,</i> 230.
100% charged		TR at 198	
18650 LiCoO ₂ / Graphite,	measurement	TR at 226	
charging current 2,6 A	during charging		
	with different		
charging current 5,2 A	current levels	TR at 217	
charging current 7,8 A		TR at 140	
charging current 10,4 A		TR at 133	
charging current 13 A		TR at 123	
pack of 3 from Li-Ion-	measurement	To at 118	https://www.hazards.co//articles/pdf/
batteries, charging current	in an adiabatic	TR at 150	ote%20-%20Runaway%20Li-
5 A, discharging current 15 A	calorimeter,		on%20Battery%20Explosion%20latest
	the heat is		%20 2012 .pdf
	generated by		
	continuous		
	charging and		
	discharging		
18650	heating in	To at 160	A. W. Golubkov, S. Scheikl, R. Planteu, G. Voitic, H. Wiltsche, C. Stangl, G.
Lix(Ni0.80Co0.15Al0.05)O ₂ ,	calorimeter at		Fauler, A. Thaler, V. Hacker: Thermal
0% charged	different		runaway of commercial 18650 Li-ion
25% charged	(over)-charge	To at 150	impact of state of charge and
50% charged	conditions	To at 140	overcharge, RSC Adv., 2015 , 5, 57171
75% charged		To at 140	
100% charged		To at 138	
112% charged		To at 144	
120% charged		To at 80	
127% charged		To at 80	
132% charged		To at 80	
143% charged		To at 65	
LixFePO ₄ ,	heating in	To at 195	
25% charged	calorimeter at		
50% charged	different	To at 130	
75% charged	(over)-charge	To at 149	
100% charged	conditions	To at 140	
115% charged		To at 155	
130% charged		To at 80	

bicycle battery, manufacturer Phylion, 100% charged, but typically about 50% capacity due to cell aging.	electric heating, One- sided, 150 W		test results ALBERO May 2019, Trauen
prismatic cells (attempt A1)		TR at > 150°C 45min	Note: The temperature measurement takes place
round cells (attempt A2)		TR at > 60°C 17 min, jet of flame	outside the cell, facing away from the heating source.
pouch cells (attempt A3)		TR at ca. >120°C, 22 min	is higher than the temperature of the measuring point.
pouch cells (attempt A4)		TR at ca. >120°C, 17 min	

table 1: literature research on test results on the thermal runaway of Li-Ion-batteries

Depending on the heating conditions, the measured events occurred after approx. 40 min at the earliest after the start of heating from room temperature, with the exception of experiment A2 and the pouch cells in the ALBERO experiments.

Summary in relation to ALBERO

All measured values listed in the table above were summarized in a graph. No distinction was made between cell chemistry, state of charge, etc.. Only the distinction between thermal runaway temperature, onset temperature or venting temperature or temperature of the runaway during charging was illustrated by different colors. As mentioned above, the definitions for the events "onset" and "thermal runaway" are not uniform. In the first publications on the subject around the year 2000, this distinction was not made at all. Measurements of the onset of thermal runaway in overcharged batteries are shown in gray. However, since it is assumed that all car batteries have functioning overcharge protection, these values are considered with a lower priority. With regard to the ALBERO project, the graphic illustrates the following basic statement:

Dangerous processes (incipient thermal runaway, bursting of the cell, release of gases, thermal runaway) must be expected from approx. 80 °C! In case of danger detection by temperature monitoring, the alarm thresholds must be set accordingly. In the event of a fire or hot surfaces in the environment, it must be assessed whether temperatures of more than 80°C can occur on the car battery over a longer period of time (at least 30 min).

Figure: Summary of measurement results from Table 1 - event temperatures during heating of Li-Ion-batteries, events: incipient thermal runaway (T onset), bursting of the cell and release of gases (T venting), thermal runaway (T runaway).